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EFFECT OF A GAS CAVITY ON A PRESSURE SURGE IN A HYDRAULIC LINE 

S. P. Aktershev, A. P. Petrov, and A. V. Fedorov UDC 532.595.2+532.595.7 

Situations in which gas-filled cavities are present in the fluid are encountered in 
the operation of various hydraulic systems. This is sometimes the result of the accidental 
admission of air into the line, while in other cases it is due to the presence of air cham- 
bers placed in the system to damp pulsations of the fluid. 

It is known that the presence of a macroscopic volume of gas in a hydraulic line can 
sometimes appreciably intensify pressure fluctuations occurring during transients [i-4]. 
For example, during the filling of a pipeline with fluid, a hydraulic shock 10 times greater 
than the pressure of the feed tank is realized [2]. The author of [3] studied the hydraulic 
shock which occurred when a pipeline provided with an air chamber and filled with a viscous 
fluid was rapidly connected to a tank under constant pressure. It was found that when the 
relative volume of air av < 10-2, the presence of a chamber designed to damp pressure surges 
leads to some increase in maximum pressure (by 30%). Only at av > 3"10-2 does the chamber 
alleviate hydraulic shocks. 

A numerical method was used in [4] to study the effect of the gas cavity on the pressure 
maximum for the case of instantaneous opening of a valve with a low hydraulic resistance. 
The investigation established the optimum gas volume at which the hydraulic-shock-induced 
increase in pressure would be maximal. This value is several times greater than the maxi- 
mum pressure in a pipeline without a gas cavity. If the volume of the gas cavity is large 
enough, it acts as a damper and lowers the maximum pressure. Thus, depending on the param- 
eters of the hydraulic system, a localized gas volume can either relieve pressure from a 
hydraulic shock or increase the pressure to a level which is dangerous for the system. 

It should be noted that the authors of [I-4] did not study the effect of the loading 
of a pipeline by pressure. However, this parameter is important because a slow "applica- 
tion" of the load (gradual opening of a valve, etc.) is the method usually employed to elimi- 
nate dangerous pressure surges during transients in hydraulic systems. 

In the present study, we experimentally and theoretically examine a transient involving 
the loading of a pipeline with pressure when the %ine has a gas cavity at the end. In con- 
trast to [3, 4], the characteristic period of pressure build-up at the inlet of the system 
corresponded to several traversals of the line by a wave. Thus, the hydraulic-shock char- 
acter of the transient was fairly weak. 

A diagram of the test unit is shown in Fig. [. One end of a steel pipe 5 with a 
length L = 2.3 m and a diameter d = 22 mmwas connected by means of an adapter 2 and electro- 
magnetic valve 1 to an air main at a pressure PI = 7"105 Pa. A steel cylinder 6 with a 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi ~iziki, 
No. 3, pp. 92-96, May-June, 1990. Original article submitted May 26, 1988; revision sub- 
mitted December 16, 1988. 

428 0021-8944/90/3103-0428512.50 �9 1991 Plenum Publishing Corporation 



Fig. 1 

piston 7 was connected to the other end of the pipe and a pressure gauge 8 was installed 
in the same end. The pipe was filled with water through the funnel 3 to the level a'a". 
The cock 4 was then closed. The initial volume of air in the cavity was established by 
movement of the piston. Its position was then fixed. When the valve was activated, air 
entered the adapter from the main. This produced an increase in pressure at the inlet of 
the pipe. The $1-17 oscillograph i0 began to record when the valve was opened. The oscil- 
lograph recorded the signal from a DD-10 pressure transducer. The frequency characteristic 
of the transducer, powered by an IVP-2 block 9, was nearly linear up to i0 kHz (carrier 
frequency 30 kHz). We also measured the velocity of propagation of the compression wave 
along the pipe by means of a second pressure gauge positioned in the middle part of the 
pipe. 

The measurement results were compared with a theoretical relation giving the dependence 
of the pressure in the end section of the pipe on time. In the calculations, the motion 
of the fluid was described by the equations for hydraulic shock [5]: 

~P ~ u  ~u OP ~pulul  
o--{ + pc ~ = 0 ,  P3-/- + ~ + - - 2 - / - -  = 0. ( 1 )  

Here, P(x, t), u(x, t) are the pressure and velocity of the fluid; p is density; c is the 
velocity of the compression wave in a fluid-filled pipe of diameter d; X is the friction 
coefficient on the pipe wall. 

The initial conditions at the moment of opening of the valve: 

u(x~O) = 0 ,  P(x, O ) = P  o, Pc = t05 Pa. " ~ - " ( 2 )  

In the initial section of the pipe, P and u are connected by the relation 

x = 0: P = Pc + AP - -  ~lp~[u]/2, ( 3 )  

where $i is the hydraulic resistance at the pipe inlet; AP(t) is the increase in pressure 
in the adapter after opening of the valve. The relation AP(t) is determined by many param- 
eters, including the volume of the adapter, the cross section of the valve, and the pressure 
in the main. Due to the complexity of accounting for all of these parameters, in our calcu- 
lations we assigned the function AP(t) in the form 

AP(t) = PI(I -- exp (--t/~1)) + P2 exp (--t/*2) sin ~t. (4) 

The characteristic period of pressure build-up xl was chosen from a comparison with the 
experimental results. The second term in (4) accounts for the oscillations which develop 
during the compression of the air in the adapter, since the adapter, together with the pipe 
leading to the valve, forms a Helmholtz resonator with the natural frequency ~ = 1.05.10 s 
sec -I These vibrations, with a characteristic rise time ~2, are clearly distinguishable 
on certain oscillograms (as a series of decaying "peaks" at t < 15 msec in Fig. 2b, for 
example) and have nothing to do with the presence of the gas cavity. They are extraneous 
in relation to the process being studied here. The coefficients PI and P2 are constant 
and are determined from the conditions of the experiment. 

The boundary conditions in the end of the pipe where the gas cavity is located 

x = L : d V / d t  = - - ~ d 2 u / 4 ,  P - - P g  = ~#u[u]/2, PgV • =PoVo  ~. ( 5 )  

Here, e~ and V are the pressure and the volume of the gas under the piston (V 0 is the initial 
volume); P and u are the pressure and velocity of the fluid in the end of the pipe; $2 is 
the hydraulic resistance between the pipe and the cylinder. Equation (5) means that the 
compression of the air in the cavity of the cylinder is assumed to be adiabatic, ~ = 1.14. 
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Fig. 2 

Having excluded Pg and V from (5), we easily obtain a relation which connects the pressure 
and velocity of t~e fluid in this section. 

Equation (i), with initial and boundary conditions (2)-(5), was solved by the method 
of characteristics. Here, the boundary conditions were augmented by the relations for the 
characteristics in the corresponding sections. We used the following parameter values in 
the calculations: c = 1170 m/sec (from measurement results); PI = 5"10s Pa; ~i = I0 msec, 
~2 = 5 msec (chosen from a comparison with the experimental data); ~I = 450, ~= = 500 (de- 
termined by the cross-sectional areas of the adapter and the pipe). 

Figure 2 shows oscillograms of the pressure-gauge signals (solid lines) in comparison 
with the calculated results (dashed lines) for two values of the relative volume ~v = 4V0/ 
~d2L of air in the cavity: ~v = 0.001 (a) and 0.008 (b). It can be seen from the curves 
that pressure increases nonmonotonically, which is due to the oscillatory character of motion 
of the fluid in the pipe. In the case of a low content of gas (Fig. 2a), the time interval 
AT between successive pressure maxima (the period of oscillation) is only slightly greater 
than the quantity 4T 0 (T o = L/c) representing the period of hydraulic-shock-induced oscilla- 
tions in a pipe without a gas cavity. The maximum increase in pressure in this case barely 
exceeds PI. The hydraulic-shock character of the process is weakly expressed due to the 
relatively slow increase in pressure AP(t)in the adapter. The small increase in the volume 
of air in the cavity leads to a substantial increase in both the period and the "amplitude" 
of the pressure oscillations. For example, the pressure increase in the first peak (Fig. 
2b) is 1.65P I. This can be attributed to the fact that the presence of compliant gas vol- 
ume in the end of the pipe leads to a large acceleration of the fluid under the influence 
of pressure AP(t) in the initial section of the pipe [4]. As the fluid subsequently slows, 
its kinetic energy is converted into the elastic energy of the compressed gas. This accounts 
for the pressure maxima in Fig. 2b. Thus, liquid in a pipe with a gas cavity constitutes 
an oscillatory system. Meanwhile, the mass of the liquid determines the inertia of the 
system, while the gas volume plays the role of a nonlinear elastic spring. 

The period of oscillation AT increases with an increase in the volume of the cavity - 
as shown in Fig. 3 - since an increase in the size of the gas volume is accompanied by an 
increase in the compliance of the "gas spring." It can be seen that the experimental points 
(each point being the result of 5-7 measurements) agree quite well with the calculation. 
It should be noted that in the range we studied, ~v < 0.02, the characteristic time of the 
oscillations is comparable to the time T o it takes the compression wave to travel along 
the pipe. As a result, the piston model of fluid motion in [4] is invalid in the present 
case. 

The fluid vibrations which occur with loading of the system die out over time due to 
hydraulic losses, thus accounting for the smaller size of the maxima after the first pres- 
sure maximum (see Fig. 2b). As was shown by the calculations, the main contribution to 
attenuation of the vibrations is made by hydraulic resistance concentrated at the ends of 
the pipe. Friction losses on the pipe wall have almost no effect on the amplitude of pressure. 

lJ /§ 08 
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Fig. 3 Fig. 4 
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Figure 4 shows the dependence of the size of the first pressure maximum on the gas 
volume in the dimensionless variables Pm = Pm(~v ), Pm = Pmax/Pz, where Pmax is the 
pressure in the first peak. The initial increase in pressure with an increase in ~v - due 
to intensification of the effect of the gas cavity on the acceleration of the liquid - is 
subsequently replaced by a smooth decrease in ~ due to the increasing role of hydraulic 
losses [4]. At ~v > 0.007, the experimental data is somewhat higher than the theoretical 
results. This may be connected with the fact that, in the calculations, hydraulic losses 
were accounted for by means of constant coefficients Sz and ~ taken for a steady flow. 
For nonsteady motion, however, hydraulic resistance may depend on the instantaneous values 
of fluid velocity and acceleration. 

Thus, in the investigated case of relatively slow loading of a hydraulic system, the 
presence of a small volume of gas (~v ~ 0.01) leads to a substantial (albeit less than for 
instantaneous loading) increase in the pressures realized in the transient. The possibly 
dangerous effect of a localized gas volume such as that examined here should be considered 
in the analysis of transients in hydropneumatic systems. 
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WAVE FLOWS OF A CONDUCTING VISCOUS FLUID FILM IN A TRANSVERSE 

MAGNETIC FIELD 

Yu. N. Gordeev and V. V. Murzenko UDC 537.84 

Investigation of the wave regimes occurring in thin layers of a viscous weak-conducting 
fluid in magnetic and electrical fields is of interest in connection with the prospective 
utilization of film flows in nuclear power [i] and other technological processes. Experi- 
mental and theoretical investigations of wave effects in structures that occur on the free 
surface of an ordinary (non-electrically conducting) viscous fluid showed that these phenom- 
ena influence the stability and evolution of the film flows substantially [2-4]. The theory 
of the wave motion of a laminar viscous film surface was first developed by Kapitsa [2]. 
The critical value of the Reynolds number was obtained for which a wave mode is built up 
in the film when it is exceeded. It is shown that the mass transfer is improved in films 
in the wave mode as compared with ordinary flow conditions. At this time magnetohydrodynamic 
flows of conducting viscous fluid films are studied intensively [5-7]. A mathematical model 
is proposed in [5] for a flow with a free surface of the liquid-metal diaphragm of a power 
plant. The asymptotic of the surface of the spreading film in transverse electrical and 
magnetic fields is presented in [6]. The stability of a laminar flow of an electrically 
conducting fluid film is considered in an induction-free approximation in [7] on the basis 
of the Orr-Sommerfeld equation. 
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